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Abstract
The Global-Scale Agent Model (GSAM) is presented. The GSAM is a high-performance
distributed platform for agent-based epidemic modeling capable of simulating a disease outbreak
in a population of several billion agents. It is unprecedented in its scale, its speed, and its use of
Java. Solutions to multiple challenges inherent in distributing massive agent-based models are
presented. Communication, synchronization, and memory usage are among the topics covered in
detail. The memory usage discussion is Java specific. However, the communication and
synchronization discussions apply broadly. We provide benchmarks illustrating the GSAM’s
speed and scalability.
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1. INTRODUCTION
Modern mathematical epidemiology began with the Kermack-McKendrick model of 1927.
This elegant system of differential equations posits perfect mixing in the population, with
individuals moving from the susceptible pool to the infected one to the removed (recovered
or dead) one. Within these pools, or “compartments,” there is no diversity among people,
and no adaptation in their behavior. Despite these strong idealizing assumptions, the
approach fundamentally illuminated the threshold (“tipping point”) nature of epidemics and
explained “herd immunity,” wherein immunity of a subpopulation can make outbreaks
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fizzle, protecting the entire herd. This remains the goal of vaccination strategy to this day,
and the original equations spawned a voluminous and valuable scientific literature
[Anderson and May 1993; Keeling and Rohani 2007].

Despite their fundamental contributions, differential equation models are ill-suited to
representing complex modern social networks and contacts between distinct individuals,
interacting directly with one another (not in a well-mixed population) as they move about
spatially, adapting their behaviors–perhaps irrationally–based on disease prevalence. With
the advent of modern computing, another tradition has emerged which embraces this
complexity: the agent-based computational model. This approach has made deep inroads
into infectious disease modeling, in some respects displacing differential equations. The
Global-Scale Agent Model (GSAM) represents the state-of-the-art in agent-based epidemic
modeling.

1.1. Defining Feature of Agent-Based Models
Simply put, agent-based models (ABMs) are artificial societies [Epstein and Axtell 1996]. In
an orthodox ABM, every single individual is represented as a distinct software object. There
is no aggregation into homogeneous pools. Agents are heterogeneous and can differ in
myriad ways (e.g., age, disease state, behavioral rules). Events unfold on an explicit space of
some sort – a social network, a city, or a multinational region, for example. Within this
interaction space, agents act autonomously, executing some itinerary, such as going to
school or work. Typically, these cyber-people have limited (often local) information, and
limited cognitive capacity. They are boundedly rational, to use Simon’s [1982] phrase, and
their behavior may adapt depending on their perceived situation [Epstein et al. 2008].
Finally, and crucially, agents interact directly with one another. So, in a strictly agent-based
infectious disease model, a dendrogram showing exact chains of agent-to-agent transmission
is constructible [Epstein 2007]. Even in stochastic models, for any particular realization, the
precise sequence of person-to-person transmissions can be reconstructed and displayed. For
a computational model to qualify as an ABM in this most catholic sense, it must pass this
“dendrogram test.”

1.2. Applications of Agent-Based Infectious Disease Models
Agent-based infectious disease models (also termed individual-based models) are a
comparatively recent child of computing. Epstein and Axtell [1996] published such a model
in 1996. Since then, model scales have grown steadily, from county-level [Burke et al. 2006;
Epstein et al. 2004], to city level [Eubank et al. 2004], to the small nation [Ferguson et al.
2005; Longini et al. 2005], to US scale. [Ferguson et al. 2005]. Cooley et al. [2008] examine
a number of the more prominent published models.

These models have been highly influential, and have been used by governments and
international health organizations to devise containment strategies for smallpox, MRSA,
dengue, hoof and mouth disease, Avian Flu, and now H1N1 swine flu. The National
Institutes of Health MIDAS (Models of Infectious Disease Agent Study) Project, the Johns
Hopkins Medical School’s DHS-funded PACER (Preparedness and Catastrophic Event
Response) Project and the CDC-University of Pittsburgh Public Health Adaptive Systems
(PHASYS) are prominent US examples. The Global Scale Agent Model presented here is
employed in all these efforts.

1.3. Three Distinctive Features of the GSAM
The GSAM is unprecedented in its scale, in its speed, and in being Java based. Regarding
scale, there are global models, but they are not agent-based. There are agent-based models,
but they are not global. The GSAM is the first planetary scale strictly agent-based model.
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Indeed, no other ABM of epidemics includes more than a few hundred million individuals,
where–as we demonstrate–the GSAM can efficiently run with over 6 billion individuals
simultaneously in memory. Regarding speed, the GSAM’s US submodel (300 million
agents) executes in roughly twenty minutes, where the national scale competitors require
many hours on similar computers. The GSAM is dramatically faster than these, despite their
presumed advantage of being written in C or C++. GSAM does this while remaining
portable because it is written entirely in Java. We believe the GSAM is one of few (if any)
distributed agent-based models that does not suffer major performance penalties due to
internode communication. This all argues for a fundamental reevaluation of Java’s place in
high performance computing.

Precisely how this was accomplished is the subject of this article. Before presenting
implementation details, however, it is important to preempt a possible confusion.

1.4. Calibration to Particular Disease Irrelevant
The GSAM is a platform. It is not a model of any particular disease. The present exposition
of the general platform obviously requires us to specify a contagious disease of some sort.
To this end, we will use a plausible representation of the H1N1 (Swine flu) virus, employing
assumptions consistent with current scientific publications in this area. But we explicitly
renounce any claim to have ”validated” the H1N1 model proper, in so far as this term
denotes calibration against data. This is simply not our aim. To criticize the platform based
on objections to illustrative H1N1 disease specifics misses the point.

2. FLEXIBILITY AND LANGUAGE CHOICE
It would be shortsighted to build a powerful modeling platform that supports only a single
disease and a single hardware environment. With this in mind, maintaining flexibility was
the chief high-level design goal of development. In particular, we wanted the GSAM to be
portable across operating systems and hardware configurations. We also needed the GSAM
to support multiple diseases (perhaps circulating simultaneously). This disease flexibility
requires the GSAM to support a wide array of possible individual behaviors. For example,
the behavior important to an influenza simulation (school contacts) differs radically from the
behavior important to an HIV/AIDS simulation (sexual contacts, needle-sharing).

Due to the hardware and software flexibility requirements it is not surprising that the GSAM
is implemented in Java. Java is a modern programming language that supports object-
oriented (OO) design. A proper OO design enables the GSAM to easily exhibit the behavior
flexibility we required by extending a class here and implementing an interface there. Using
Java also allows the GSAM to be quickly shuttled from one operating system to the next.
This Java implementation is also efficient on both shared-memory and distributed-memory
hardware. In short, Java enables the GSAM to easily meet its flexibility goals.

Java has other nontrivial benefits. As a widespread language, there are many mature, fully
documented utilities available to leverage. These include the data structures of java.util, the
communication utilities of java.rmi, the technical computing resources of the Colt Project,
and the graphics utilities of JFreeChart. The multithreaded programming resources in
java.util.concurrent (concurrent data-structures, semaphores, thread pools, and executors)
are invaluable when creating multithreaded programs. Java does have one noteworthy
constraint – remote method invocation (RMI) has large latency. However, we show how this
problem can be easily circumvented.
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3. A PARALLEL APPROACH, DESIGN SYNOPSIS
There are two simple facts that must be dealt with when developing a large-scale agent-
based model. First and foremost, a capable design must have access to large swaths of
memory. There is no evading the fact that storing 6 billion agents and their itineraries will
take up plenty of memory. The second unavoidable fact is that a singlethreaded design is
unreasonable for large populations. It will simply take too long to return results. It will also
fail to capitalize on the additional computing resources available on today’s multicore and
multiprocessor machines.

Together, these facts compel an effective model to be parallel. Accordingly, the GSAM is a
highly parallel distributed model. The GSAM’s workload is distributed across two layers. It
is first distributed across a node layer – a node is a Java Virtual Machine (JVM) dedicated to
running the GSAM. Each node then distributes its workload among its working threads. This
dual-stage distribution has two main advantages. First among them is that it allows the
GSAM to support different arrangements of computing resources. For instance, a GSAM
run can be executed entirely in one node that supports n working threads. Or the identical
population can be simulated across n nodes, where each node operates a single thread.
Appendix A contains a graphic that depicts three equivalent modeling arrangements. This
flexibility enables a GSAM to easily run on different hardware platforms.

The second benefit of a dual-stage distribution scheme is that it provides an excellent avenue
to study many variables that affect model performance. For instance, since the nodes can be
remote or local, we can measure the performance of communication between two nodes on
the same computer vs. two nodes on different computers. Or we can compare
communication between two threads of the same node vs. communication between two
threads from different nodes. Performing these comparisons allows the performance of the
model to be better understood, and facilitates the creation of a faster, more efficient model.

3.1. Preparing for Distribution
Before the GSAM can distribute its population across its computing resources, it must
partition its population into manageable pieces. Throughout this article, we refer to these
manageable pieces as ModelBlocks (MB). Each ModelBlock represents a group of agents
who live close to one another in geographic space. MBs could represent all the agents who
live in a city block, a zip code, a census tract, or perhaps a square kilometer. The size and
shape of ModelBlocks are likely to depend strongly on the format of the input data. For
instance, given access to US Census Tract data it may be convenient to create a GSAM
model in which each US Census Tract is represented by exactly one ModelBlock, while a
modeler who has access to the grid-based LandScan dataset may choose to aggregate many
adjacent grid squares into one ModelBlock (The LandScan dataset is a 43200 by 20880 grid
of estimated populations).1

Once the population has been partitioned into MBs, the GSAM is ready to distribute the
population (i.e., the ModelBlocks) across its computing resources. As with many distributed
computing problems, the best way to allocate the ModelBlocks across the available
resources is not easily determined. For example, a GSAM simulation of an epidemic within
the United States performs best when each computing resource is given a contiguous region
to simulate. On the other hand, a GSAM simulation of a global epidemic performs best
when geographic regions are divided between as many computing resources as possible.

1http://www.ornl.gov/sci/landscan/
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This difference in peak performance is caused by differences in ModelBlock size. A global
simulation uses larger ModelBlocks (in both population and area). Therefore, agents in
“global size” ModelBlocks are more likely to interact with agents from within their own
ModelBlock. This results in fewer messages between MBs (on a per-capita basis). The
reduced communication burden allows an optimal distribution strategy to focus closely on
balancing the node’s estimated workloads. However, when more messages must be sent
between ModelBlocks, as in the US example, an optimal distribution strategy will reduce the
substantial cost of sending and receiving these messages by grouping ModelBlocks that
interact with each other onto the same node.

We strongly suspect that no single distribution strategy will be best for all possible GSAM
models. If no universally best distribution strategy exists, then any single GSAM model will
only attain its maximum possible performance using a customized distribution strategy.
Fortunately, a time consuming search for this customized strategy is not necessary because
adequate performance can be achieved using round-robin, or purely random, allocation
schemes (see Section 6).

Finally, dynamic load balancing [Carothers and Fujimoto 2000; Deelman and Szymanski
1998; Peschlow et al. 2007] is worth a brief discussion. The GSAM was originally designed
to support dynamic load balancing by transferring ModelBlocks from one node to another.
However, the extremely high cost of removing a ModelBlock (along with its agents and
their events) from a node and inserting it into another node renders dynamic load balancing
a clearly losing strategy. Therefore, the GSAM does not implement any dynamic load
balancing scheme. Fortunately, significantly unbalanced nodes can usually be avoided when
ModelBlocks are allocated to nodes in a round-robin style. Randomly allocating
ModelBlocks to nodes also prevents dramatic load imbalances.

3.2. Simulation Overview
One reason the GSAM platform is fast is that it simulates only active agents although all
agents are in memory. Who are these active agents and why is this an allowable reduction in
scope? Consider this analogy: a row of 6 billion contiguous dominoes is given. Some
domino (the index case) is toppled, and a contagion of falling dominoes ensues. You wish to
simulate the progress of this wave. It would be absurd to loop through the entire list of all 6
billion dominoes at every simulated time-step. Each trip through the list would examine
billions of dominoes when only a handful are changing state at any one time. It is far more
efficient to maintain a list of active (i.e., falling) dominoes and operate only on this set.
Proper implementation of this active set modeling scheme requires that each domino
correctly determine which dominoes it will effect when active. This allows active dominoes
to promote other dominoes to the active set at the appropriate time. Predictably, when a
domino completes its fall it will remove itself from the active set.

From the domino example we see that, to track a contagion, simulating everyone’s entire
day-to-day schedule may not be necessary. But, for the GSAM to use this active set
approach its active agents must be able to determine who they will interact with while
active. Fortunately, this is easy to do in an agent-based model.

The agent-to-agent contacts that drive disease transmission can be split into two broad
categories: repeat contacts and random contacts. Both of these contact types can be
faithfully recreated when just the active agent is known. Repeat contacts are easy to
correctly implement because agents know whom they interact with on a regular basis.
Examples of repeat contacts are intrafamily contacts, contacts between friends, and contacts
between coworkers or classmates. Random contacts can also be implemented appropriately.
Active agents can select a properly distributed random agent from the entire population
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using a special probability mass function. The active agent can then interact with this
randomly selected agent, thus completing a random contact, see Section 3.4,”Random Agent
Selection and the Contact Matrix,” for greater detail.

Together, explicitly stored social networks and random agent selection enable realistic
simulation of both repeat and random contacts. This eliminates the need to explicitly
simulate every single agent’s day-to-day activities and allows the GSAM to simulate only
the behavior of active agents. Agents are considered active when they are contagious (i.e.,
infectious) or symptomatic or both. The behavior of contagious agents is obviously crucial
to an epidemic’s progression. However, the relevance of merely symptomatic agents
requires an explanation. Symptomatic agents must be modeled explicitly because their
behavior while symptomatic (but not yet contagious)may alter the simulation. For instance,
when an agent showing symptoms opts to go to the hospital and receive treatment he may be
less likely to infect other agents when he does become contagious or perhaps his treatment
will prevent infectiousness entirely.

Active agents are simulated using detailed itineraries that are randomly generated on-the-fly
(i.e., during a run). These itineraries are generated by a personalized AgentEvent object that
is created when an agent is promoted to the active set. Itineraries explicitly model three
different event types (behaviors). Those event types (behaviors) are family contacts,
coworker/classmate contacts, and random contacts. Incidentally, several other epidemic
models also use these social networks (family, work/school, random) [Ferguson et al. 2005,
2006; Glass et al. 2006; Longini et al. 2004]. For more information about agent itineraries
see “Agent Itinerary Generation” below.

These AgentEvents are stored in a thread’s only priority queue. This priority queue contains
all the events that take place within any of the ModelBlocks a thread has been allocated.
When a GSAM thread is running it polls (removes) the event with minimum time, typically
an AgentEvent, from its sole priority queue and implements the appropriate event.
Execution proceeds in this manner until the simulation is complete.

Now that we have a “forest” level view of the GSAM we can take a more in-depth “tree”
level view of certain design aspects. There are a few GSAM design features that warrant
very detailed discussion. Among them are synchronization/communication and memory
usage. We will conclude with a detailed discussion of model performance and scaling.

3.3. Agent Itinerary Generation and Behavior
First, an epidemic model needs to know when people get sick, whom sick people contact,
when those contacts occur, and when the sick recover. An agent’s itinerary is a sequence of
events that answers these (and possibly more) questions. With so much riding on an agent’s
itinerary it is vital that these itineraries are generated in a flexible, sensible way.

The GSAM platform needs the itineraries to be flexible so that it can support different
activities for different people. For instance, the itinerary of a stay-at-home parent should
include many midday family contacts while the itinerary of a parent who works a standard
9-to-5 job should virtually exclude family contacts during business hours. The GSAM
platform is built specifically to enable differences like this to be easily incorporated into
agent itineraries.

Currently, an agent’s itinerary includes four different classes of events: family contacts,
coworker/classmate contacts, random contacts, and disease updates. The three contact
classes are generated using three different easily customizable behavior streams. A behavior
stream is nothing more than a graph of occurrence probability for the relevant event versus
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the event’s occurrence time. The resulting graph defines the instantaneous rate (intensity)
function λ(t) at each simulation time t for a nonhomogenous Poisson process (NHPP) (for
some, the time variable may not be discretized finely enough to warrant distinction as a
Poisson process). This NHPP is used to generate the times at which contacts will occur.
Figure 1 illustrates three behavior streams that could generate a plausible itinerary for an
agent during a normal business day.

It is easy to support many different types of agents by defining many different behavior
streams. It is also easy to support dramatic shifts in behavior by abruptly switching the
behavior streams from which an agent is generating its itinerary. Swapping behavior streams
makes it easy to implement weekend behavior that is vastly different from weekday
behavior. It is also useful when modeling how an agent’s itinerary changes after he begins to
exhibit symptoms of a pathogen.

The flexibility of the behavior stream approach also makes modeling different diseases more
manageable. This is because the interpretation of a contact may change when the disease
being modeled changes. For instance, a contact itinerary suitable for a flu model that
includes many agent-to-agent contacts per day is clearly inappropriate in a model of HIV/
AIDs. The ease with which the behavior streams can be altered makes authoring a new
GSAM less onerous.

Agent itineraries also include disease update events. These events move an agent through
the natural history of disease and are generated in accordance with the biology of the
pathogen being modeled. Currently, an agent’s disease status falls into one of the following
states: Dead, Recovered, Susceptible, Noncontagious-Asymptomatic, Noncontagious-
Symptomatic, Contagious-Asymptomatic, and Contagious-Symptomatic. If an agent’s
disease status is one of the italic states he is considered active, and his itinerary will be
generated and modeled. Notice, only three of the four infected states are modeled.

If desired, the list of possible disease states could be expanded. For instance, smallpox
comes in four different varieties (ordinary, modified, malignant, and hemorrhagic) and it
may prove useful to include this distinction in the list of disease states. (However, other
programming solutions exist, so expanding the state list is not strictly necessary.)

For more information on the AgentEvent class (the class that generates the itinerary) see the
Section 4.3, “The Priority Queue and Its Contents”. This section describes the exact
implementation in greater detail.

3.3.1. The Importance of Behavior—An acknowledged weakness of traditional
epidemic modeling is that behavioral adaptation is ignored [Epstein et al. 2008; Kremer
1996]. The GSAM is useful to decision-makers because it is easy to implement itinerary
changes induced by policies such as school closures and travel restrictions. It can also
incorporate endogenous behavioral changes due to fear or prevalence-elasticity during a
pandemic. The GSAM’s speed offers rapid feedback on the potential impact of various
policies, as well as behaviors such as vaccine refusal or nonadherence to health
recommendations.

3.3.2. Computing Next Event Timing—In many simulations computing the occurrence
time of a NHPP’s next event is the single most important determinant of overall simulation
performance. Hence, it is important to use an efficient computation method [Lee et al.
1991]. Space constraints prohibit a full treatment here. However, much more information
about this topic can be found in the online supplement.
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3.4. Random Agent Selection and the Contact Matrix
In order to justify simulating active agents exclusively, the GSAM platform must be able to
faithfully recreate random contacts when only the active agent is known. This means the
GSAM platform must have a reasonable way to select a random agent to pair with an active
agent. Making this selection requires two decisions. The first decision is determining in
which MB the randomly contacted agent lives. The next decision is determining who in that
MB will be the random contact. Correctly making these decisions are the key components to
creating a model with realistic random contact dynamics.

For now, assume the GSAM is given a matrix P where matrix entry Pij is the probability that
a person from MB i travels to MB j. This matrix is a trip distribution matrix (given that a trip
occurs). Treating P as input allows the GSAM to separate travel behavior assumptions from
the rest of the platform.

Using P, the GSAM computes another matrix C dubbed the contact matrix. The entry Cij is
the total probability that an agent from MB i contacts an agent from MB j. Specifically,
these entries give the probability that an agent from MB i contacts an agent from MB j in a
mutual destination MB k, summed over allk. Pseudocode that generates C is shown here
(this pseudocode makes use of MATLAB function names).

POPS = ModelBlock populations //a row vector
TRAVELERS=diag(POPS)*P //a matrix
TOTALS=POPS*P //a row vector of column sums
INTERACTij = TRAVELERSij/ TOTALSj //a matrix
C=P*(INTERACT) //the contact matrix

Once C has been computed, selecting a random contact is straightforward. The GSAM
knows where the active agent is from. So, suppose she is from ModelBlock i. The GSAM
must convert the ith row of C into a probability mass function (PMF). The GSAM platform
uses this PMF to select a random ModelBlock M. The randomly contacted agent will be
selected from the population of ModelBlock M.

The randomly contacted agent should not be selected from the population of M uniformly.
The selection probability must be weighted according to the likelihood that an individual
agent would be a part of a random contact (as defined by his behavior stream). For instance,
if an agent’s behavior stream dictates that he has zero probability of making a random
contact at time t, it would be improper to pair this agent with another at time t. The GSAM
platform adjusts for differences between agents’ behavior streams using a rejection sampling
technique [Robert and Casella 2004].

It is important to note that, due to memory requirements, the contact matrix places a soft
upper bound on the number of ModelBlocks that can plausibly be simulated. For example,
storing a 15,000 × 15,000 matrix of doubles requires 1.8GB of memory while a 20,000 ×
20,000 matrix requires 3.2GB of memory [Gosling et al. 2005]. Incidentally, there are
approximately 31,000 zip codes in the continental US. Storing a matrix of this size (almost a
trillion entries) requires 7.67GB of memory.

3.4.1. The Travel Matrix P—The prior section treats the matrix P as given to emphasize
the fact that the GSAM platform always uses P the same way regardless of how P was
created. Obviously, the method used to arrive at P should be justifiable. Currently, the
GSAM computes P by first computing a preliminary matrix F. The F matrix contains the
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estimated flow (i.e., number of trips) between different ModelBlocks. For example, if the
entry Fij = 20, then it is assumed that 20 people start trips in MB i and end their trips upon
arrival in MB j.

F is computed as follows:

Here costij is an estimate of the travel cost for trips between ModelBlocks i and j, the pops
are the populations of the respective ModelBlocks, and a and b are parameters.

At this point, the GSAM can compute the P matrix by dividing each entry in F by its
corresponding row sum as shown here:

The F matrix is an example of a gravity model (so-called due to its algebraic resemblance to
Newton’s Law of Gravitation, with the pops interpreted as mutuallyattracting masses, etc).
In addition to modeling travel/traffic patterns, gravity models have been used to model trade
flows and migration [Bergstrand 1985; Isard 1954; Voorhees 1956].

4. COMMUNICATION AND SYNCHRONIZATION
4.1. Design

Without doubt, the careful design and implementation of internode and interthread
communication is the most important determinant of the GSAM’s performance. Some of the
following discussion will be Java specific. However, the design aspects most crucial to
performance could likely be incorporated into models/platforms written in different
programming languages.

While a thread is repeatedly processing events in its priority queue, it will occasionally
encounter an event that requires interaction between agents assigned to different threads.
Since this event is expensive to implement instantaneously, it will set aside this particular
event for later execution. A record of this unexecuted event will be saved in a new
OffThreadContactEvent (OTCE) object. After this record is created, the executing thread
will continue processing events within its priority queue. Each OTCE will contain enough
information to enable the receiving thread to implement the previously scheduled, but
unexecuted interaction. Eventually, these OTCEs must be sent to the other threads for
execution.

At first glance, the process of saving some events for later execution appears severely
flawed. Here is an example of the apparent problem. Let OTCE α represent a contact
between two agents that should occur at time 172. Yet, α gets transmitted and executed at
time 200. How has this not corrupted the timeline of the model?

The answer lies in the incubation and latent periods of the disease (see Figure 2). If an agent
is exposed and infected with a disease at time x but does not alter his behavior or infect other
agents until time (x + y) then the newly infected agent is effectively unchanged until time (x
+ y). Therefore, notice of his infection can be delayed as far as, but not including, time (x +
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y). Thus, the maximum allowable time between communication events y is strictly dictated
by the minimum of the incubation and latent periods of the simulated disease.

Using this rule to set the communication interval guarantees that communication occurs
frequently enough to ensure that agents who are infected by OTCEs (that are always delayed
by some amount) can have their “move to the active set” time assigned in such a way that
they always enter the active set at the correct time despite the fact that the notification of
infection arrived late. In other words, the communication delay had no effect.

Curiously, delaying communication enables some agents to be infected twice – loosely
speaking. Consider an OTCE that is guaranteed to infect agent i. If this OTCE is created at
time 172 and sent at time 200 it is still possible for agent i to be infected in the interim, say
at time 184. In this case, agent i must have his infection time rolled back from 184 to 172,
when his infection first occurred. These simple rollbacks are the only corrections that
delayed communicate necessitate. The third portion of Figure 4 depicts this minimal
rollback.

Since communication can be delayed a small amount without consequence, periodic bulk
communication is best. It is easy to code and debug. It has the least overhead. It provides a
convenient place to collect data. And it facilitates reproducibility. This is how the GSAM
platform manages communication between all threads. A flowchart of the communication is
shown in Figure 3.

4.1.1. Another Interpretation—The GSAM platform could be considered a platform for
Parallel Discrete Event Simulation (PDSE). Using the terminology of PDSE, a GSAM is an
optimistic simulation (i.e., some events can be executed out of time sequence) [Fujimoto
1990; Perumalla 2006]. Since the GSAM platform is optimistic it does not suffer from the
severe drawbacks associated with coordinating conservative simulations. Nor does it suffer
from the main drawback of optimistic modeling – correcting out-of-order computations.
Typically, optimistic simulations must be prepared to roll back events that were executed
too soon. Fortunately, the GSAM does not need to create expensive checkpoints or waste
substantial execution-time correcting prior calculations, because its rollback mechanism is
trivial. Also, the rule for setting the communication interval prevents the possibility of a
cascade of rollbacks. In short, the GSAM platform avoids the biggest problems of both
optimistic and conservative simulation.

4.2. Implementation
Periodic bulk communication does not immediately confer excellent model performance.
However, periodic bulk communication allows for three important optimizations that
otherwise would not be possible. One optimization involves eliminating the threat of data
corruption due to concurrent manipulation. The other two optimizations reduce
communication overhead by orders of magnitude [Mathew and Roulo 2003]. These
reductions in communication overhead are the most important optimizations throughout the
entire GSAM platform.

Recall that each ModelBlock (and its data) is assigned to a specific thread. These
assignments form a partition of the population that is used to define each thread’s exclusive
domain. Normally, threads in a multithreaded environment spend a nontrivial amount of
time acquiring and releasing semaphores and/or object locks that prevent data corruption
due to concurrent access [Christopher and Thiruvathukal 2001]. If threads are restricted
from operating outside their exclusive domains, then those threads can operate without the
usual performance-degrading object-locking schemes. Not only does this improve
performance, but it also makes programming notably easier.
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A proper discussion of the next two optimizations requires a little Java-specific knowledge.
Java’s Remote Method Invocation (RMI) makes implementing inter JVM (e.g., inter node)
communication extremely simple. Communication becomes simple because RMI leverages
other expensive powerful operations to do its work [Java 6 SE RMI documentation].
Namely, RMI automates the serialization (deconstruction of an object into a stream of bits),
transmission, and deserialization (the reconstruction of the original object from the bit
stream) of every object it transmits between JVMs. These three automated steps are clearly
nontrivial, and that is reflected in the execution cost of RMI calls. While RMI makes coding
simple, using it inefficiently can severely hinder performance.

When communicating in bulk the entire queue of unexecuted OTCEs can be sent using one
RMI call. This single bulk message can eliminate literally millions of expensive RMI calls
per communication period. This optimization is so powerful that going without it may
increase computation time by a factor of 100 or more.

The second possible overhead reduction is easy to overlook because RMI makes
implementing its alternative so graceful. It is natural to code a communication scheme like
this.

/* Send the raw OTCE array to another node using RMI. */
public void exportEvents(Node nd, OffThreadContactEvent[] events) {
try {
nd.importEvents(events); //the RMI call
{ catch (RemoteException re) {
//handle an error here
}
}

In fact, this is how communication was originally implemented in the GSAM. This
communication scheme does reduce the number of RMI calls (which is the most crucial
optimization), but it fails to reduce the number of serialization/deserialization pairs.

It is more efficient to transmit a single large bucket of primitive arrays (i.e., double[],
boolean[], etc.) rather than an array of many small objects. When RMI serializes an array of
objects it must serialize each and every object within that array [Java Serialization
Documentation]. If, however, that array of objects is transformed into multiple arrays of
primitives, then Java can quickly send those primitive arrays over RMI. A code snippet that
implements this optimization is shown here.

/* Build a “bucket object” to send, do not send OTCE array. */
public void exportEvents(Node nd, OffThreadContactEvent[] events) {
OTCEBucket bucket = buildBucket(events);
try {
nd.importEvents(bucket);); //the RMI call
{ catch (RemoteException re) {
//handle an error here
}
}
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Table I demonstrates the enormous power of these two optimizations. This table shows how
long it takes to transmit 10 million numbers between two JVMs using RMI calls with
different signatures. The first two rows in this table use RMI calls that only send one piece
of data per call. The last two rows use RMI calls that bundle all the data into one array
before making a single RMI call. The 1st and 3rd rows leave the original data in objects and
require significant serialization/deserialization. The 2nd and 4th rows transmit only
primitive data and require no serialization. Even though this example does not use OTCEs, it
is clear that assembling and transmitting a bucket of primitive arrays is vastly preferable to
other communication strategies.

4.3. The Priority Queue and Its Contents
While a GSAM thread is operating, it is constantly finding, removing, and executing the
SimulationEvent with the minimum time (SimulationEvents will be discussed in depth
momentarily). Typically, executing one SimulationEvent produces another SimulationEvent
that must be added to the collection of SimulationEvents. Occasionally, a GSAM thread
must remove an arbitrary SimulationEvent from its collection of SimulationEvents.

Given this description, it seems likely that the GSAM would use java.util. PriorityQueue (or
its Colt Project equivalent) to store its SimulationEvents. This class supports both insertion
of new items and removal of the minimum item in O(log(n)) time. But, this class cannot
efficiently remove an arbitrary item because it is implemented using a heap. Consequently,
the GSAM attains better performance storing its collection of SimulationEvents in a binary
tree.

It may be a slight misnomer to use the term priority queue throughout this article when, in
fact, the GSAM uses TreeMaps, which are red-black trees. However, since the GSAM
makes such heavy use of the put and pollFirstEntry operations it makes sense to use the
term priority queue because that is the spirit in which the TreeMaps are used.

As noted, priority queues (TreeMaps) contain SimulationEvents. SimulationEvent is an
abstract class that implements the Comparable interface. Exactly four classes extend
SimulationEvent. This shared base class allows all subclasses to share a single sorting
methodology. A code skeleton for the SimulationEvent class is as follows.

public abstract class SimulationEvent implements Comparable {\{}
/** When this SimulationEvent should be implemented. */
protected int time;
/** The ModelBlock associated with this event. */
protected ModelBlock place;
/** A tiebreaker for use when sorting SimulationEvents. */
protected final int tiebreaker;
/** Override this method to define different events. */
public abstract implementEvent();
/** Sort SimulationEvents by time, then place, then tiebreaker. */
public int compareTo(Object otherEvent) {
//implementation not shown to save space
}
}

ReconcileEvent (RE) is the simplest SimulationEvent subclass. Exactly one RE is placed in
each priority queue. When this RE reaches the top of the priority queue, it forces the
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executing thread to go idle. A thread’s final acts before going idle are to increment the
ReconcileEvent’s time variable, insert the RE back into the priority queue, and inform its
parent node that it has gone idle.

Once a thread is idle, it is ready to send and receive OTCEs. Communication of OTCEs
between threads occurs when all threads throughout the GSAM have gone idle. This ensures
that OTCEs are sent and received in a predictable order. It is important to note that a
thread’s current time goes backwards when OTCEs are imported.

LogUpdateEvent (LUE) is the third subclass of SimulationEvent. LogUpdateEvents prompt
periodic data collection. When a ModelBlock is first allocated to a thread, an LUE dedicated
solely to that ModelBlock is put in the priority queue. When a LogUpdateEvent is removed
from the top of a priority queue it prompts the executing thread to collect and record data
about its dedicated ModelBlock. The LUE has its time variable incremented by a fixed
interval and is then inserted back into the priority queue. Eventually, each ModelBlock’s
LUE reappears at the top of the priority queue. In this manner, LogUpdateEvents ensure that
all relevant data is regularly collected over the duration of a GSAM simulation. When a
simulation is complete, these logs are assembled into a single master log that contains all
collected data.

The last subclass of SimulationEvent is AgentEvent. AgentEvents are created when agents
are promoted to the active set due to their impending symptoms/ contagiousness.
AgentEvents are still sorted according to the time variable they inherit from
SimulationEvent even though the AgentEvent class declares four new time variables. The
AgentEvent class ensures that the time variable from Simulation-Event is always set to the
minimum of familyEventTime, randomEventTime, cowork-erEventTime, and
diseaseEventTime. When an AgentEvent object is removed from the top of the queue, it
may prompt the execution of one of four different subevents: family contact events, random
contact events, coworker/school contact events, or disease progress events. After the
appropriate subevent is executed, the corresponding time variable is recomputed (using
behavior streams described in Section 3.3, “Agent Itinerary Generation and Behavior”). The
time variable inherited from Simulation-Event is then recomputed, and the AgentEvent is
reinserted in the priority queue. The first and last subevents an AgentEvent will call for are
both disease progress events. The first disease progress event occurs when the agent
becomes symptomatic or contagious, whichever happens first. The last disease progress
event occurs when the agent recovers (or dies) from the disease. A code skeleton of
AgentEvent is shown here.

public class AgentEvent implements Comparable {
/** The ID_Number of the person this scheduler tracks. */
protected int personIndex;
/** When this agent next contacts a family member. */
protected int familyEventTime;
/** When this agent next contacts a random person. */
protected int randomEventTime;
/** When this agent next contacts a classmate/coworker. */
protected int coworkerEventTime;
/** When this agent shifts from one disease state to another */
protected int diseaseEventTime;
/** Override this method to define different events. */
public abstract implementEvent();
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/** Sort SimulationEvents by time, then place, then tiebreaker. */
public int compareTo(Object otherEvent) {
//implementation not shown here to save space
}}

As evident from the AgentEvent code skeleton, AgentEvents can be considered a bundle of
four different events. We do not create separate FamilyEvent, RandomEvent,
CoworkerEvent, and DiseaseEvent classes because an implementation with separate classes
wastes memory. If these classes were created, then objects of those types would need to be
instantiated. Then, once constructed, each of these objects would necessitate another
Map.Entry object that would otherwise be unnecessary. Bundling these events into a single
class also reduces the total number of events in the priority queue by almost 75% (we can
assume that the number of LUEs and OTCEs will be small compared to the number of
AgentEvents) (see Figure 4). Section 6 of this article shows why this 75% reduction in
object count is important in terms of memory.

4.4. Random Numbers and Reproducibility
It is vital for output from GSAM models to be reproducible. Reproducibility enables the
creation of more relevant performance benchmarks. Reproducibility helps developers track
down bugs. And most importantly, reproducibility allows results to be independently
verified. Please note “reproducibility” in this context means only “generate the same result”
and does not require identical low-level memory behavior. Obviously, since Java does not
offer direct memory management the latter requirement would be inappropriate.

In general, a simulation using random numbers must meet three criteria for its results to be
reproducible. It must use a stream of random numbers that can be recreated exactly. It must
use those numbers in the identical order. Finally, all modeled behavior needs to be
deterministic or draw random numbers from the proper stream. If any of these criteria is not
met, the results from a simulation cannot be reliably recreated.

The GSAM uses the Mersenne Twister-based random number generator in the previously
mentioned Colt Project. This class can produce a reproducible stream of pseudorandom
numbers provided the RNG is initialized with the same seed before any random numbers are
drawn. Alternative generators are easily substituted if desired. Demonstrating that GSAM
models meet the second criteria requires detailed knowledge of the inner workings of the
GSAM. The crucial aspect is the method by which SimulationEvent objects are ordered in a
thread’s priority queue. Notice, the SimulationEvent code skeleton above declares two
variables: time and tiebreaker (three variables are declared, but only two are relevant here).
The priority queue obviously implements events with earlier times first. But, due to the
coarse-grained time scale (1 time step is about 15 minutes) and the large number of agents
that are allocated to each thread, there will be many SimulationEvents that have equivalent
time values. These ties must be broken in a systematic way so that the behavior of the
priority queue (which sorts the Simulation event by their compareTo method) is well
defined. Not surprisingly, the tiebreaker variable is used exclusively to break these ties.

Each GSAM thread maintains a counter whose sole purpose is to sequentially number the
SimulationEvents. When the SimulationEvent constructor is called, it is passed a reference
to a ModelBlock. This ModelBlock maintains a reference to the thread to which it was
allocated. This allows every new SimulationEvent to trace back from ModelBlock to the
corresponding thread and finally to this counter. The new SimulationEvent sets its
tiebreaker variable to the counter’s current value after which the counter is incremented.
Once set, the tiebreaker variable never changes. This guarantees that all ties will be broken
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in a way that is consistent from run to run. Furthermore, since all ties are broken in a
consistent manner, all SimulationEvents bubble to the top of the priority queue in a
consistent manner, at which time they dip into a stream of pseudorandom numbers provided
by its ModelBlock’s dedicated RNG.

As mentioned previously, the periodic bulk communication scheme is a key enabler of
reproducibility. This periodicity ensures that events (OTCEs) from external threads are
incorporated into a thread’s priority queue at regular intervals, thus ensuring that they
exhibit the consistent bubbling properties that are required for reproducibility.

Lastly, results cannot be recreated if the number of nodes or threads in the system changes
between runs. Nor will results match when ModelBlocks are allocated amongst the GSAMs
resources differently. And it goes without saying that no parameters should be changed
between runs.

5. MEMORY USAGE
When the GSAM creates a simulated population, seemingly insignificant differences in an
agent’s memory-footprint can significantly impact overall memory usage. Saving one byte
per person in a 6-billion-agent model saves 6 gigabytes of memory. Similarly, using an int
where only a short is needed wastes 12 gigabytes of memory. Obviously, the GSAM code
must be very careful to conserve memory when building its population.

The first impulse is to define a simple agent class like the SimpleAgent class as follows.
Defining this class is the natural object-oriented (OO) thing to do. This class endows each
agent with an age, a disease status, a family, and a reference to his schedule. The status
variable is a reference to an Enum that defines the range of possible disease states. For
example, a DiseaseStatus Enum could include the states Susceptible, Infected, and
Recovered. The schedule variable is kept to enable swift removal of an agent’s AgentEvent
from a thread’s Priority Queue when required. If this reference were not kept, removing an
agent’s AgentEvent from the Priority Queue would require an O(n) search and an O(log(n))
removal as opposed to just an O(log(n)) removal [Goodrich and Tamassia 2008].

/* An example class -- Over simplified for brevity. */
public class SimpleAgent {
byte age;
DiseaseStatus status;
List_of_SimpleAgents familyMembers;
AgentEvent schedule;
}

The Simple Agent class is easy to understand. It encourages swift, error-free coding. It also
wastes about 90% of the memory it uses! Using a “Simple Agent” class will force a model
to use at least 49 gigabytes of memory to store a population of 1 billion agents (294GB for a
population of 6 billion agents). Notice, this 49GB does not include space for any
AgentEvents, any OffThreadContactEvents, or the entire contact matrix. The approach
above is wasteful because the mere act of object creation wastes memory. All Java objects
require more memory than their component variables alone require. This difference can be
considered an objects memory overhead. The overhead includes at least one reference
(without at least one active reference, the JVM will assume an object is garbage and reclaim
that memory). The GSAM avoids the preponderance of this overhead by storing the agent
data in large arrays. Example code is shown here.
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/* Stores what a SimpleAgent[] would using less memory. */
public class AgentGroup {
byte[] ages; //length = numAgents
byte[] statuses; //length = numAgents
byte[] leftFamily; //length = numAgents
AgentEvent[] schedules; //length = numAgents
}

In this code, the ith agent is not a distinct SimpleAgent object. Rather, it is defined by the ith
entry in each of the arrays in the AgentGroup object. This simple restructuring enables two
additional sizeable reductions in memory costs beyond the elimination of object overhead.

The first reduction in memory cost concerns the storing of family members. In the
SimpleAgent class, an 8-byte reference to a list of family members was kept (a 64-bit
computing environment is assumed). The AgentGroup class can store that same information
in the leftFamily field when all family members are stored in adjacent array entries. The
leftFamily field stores the number of agents to the left of the ith agent that are family
members of that agent. A list of each agent’s family members can easily be computed from
this array. As Figure 5 shows, the first member of each family has his “leftFamily” value set
to 0.

A second memory savings (not implemented in the AgentGroup code, but included in Figure
5) can be had by replacing the AgentEvent array in AgentGroup with a hash table. Since
hash tables normally have an array inside them, the benefit of this modification is not
immediately clear. Recall, only infected agents have dedicated AgentEvents. Therefore, at
any given time, most of the entries in the “schedules” array will be null. The GSAM saves
memory by using a hash table to store only the nonnull references. This modification can
reduce the cost of storing scheduling object references by roughly 66%. The exact memory
savings will depend on the hash tables load factor and the proportion of agents who might be
active at any one time. Note that using a standard off-the-shelf hash table is ill-advised
because it will store 8-byte pointers and require Integer object wrappers – it is preferable to
use a simple implementation to directly store 4-byte ints.

Another memory-saving technique is shown in the transition from the SimpleAgent class to
the AgentGroup class. The “status” field in SimpleAgent was replaced with a “statuses”
array in AgentGroup. However, notice that “status” is an object reference while “statuses” is
an array of bytes. Here, we are storing a 1-byte number to indicate the disease status of an
agent rather than an 8-byte reference to the appropriate Enum object (i.e., store (byte)
anEnum.ordinal() instead of anEnum). This last improvement could have been incorporated
into the original SimpleAgent class. However, this improvement violates the OO spirit of the
SimpleAgent class.

Incorporating all of these memory saving improvements allows a population of billion
agents to be stored in roughly 5.667GB as shown in Table II. This represents memory
savings of 90%.

6. PERFORMANCE
6.1. Toward a Standardized Performance Metric

As briefly discussed previously, the universe of agent-based models is extremely diverse.
Models study different topics, are written in different languages, and use different data
structures. It would be helpful to have one common way to measure the performance of
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these vastly different models. Having a common performance metric should facilitate
discussions of modeling efficiency. Since agent-based modeling revolves around simulating
behavior, we suggest measuring the number of individually implemented behaviors per
second or BPS. This BPS benchmark will vary according t hardware capabilities, but it
should still be an excellent starting point for comparisons between similar models.

BPS measurements will be lacking without a clear definition of “behavior”. W do not
propose a general definition for behavior because relevant behaviors should vary wildly
depending on the problem being modeled. For instance, ABMs of traffic flow might
consider moving one car-length to be a single behavior while ABMs of disease transmission
might consider person-to-person contacts to be the only relevant behavior. We believe that
most applications of agent-based modeling will have natural definition for behavior – and by
extension a natural BPS metric.

In this model of disease transmission we define behavior as:

— any person-to-person contact (family, coworker/classmate, and random
contacts),

— any change in disease status (e.g., Susceptible to Noncontagious-
Asymptomatic).

6.2. Benchmarks
All of results shown here are from simulations in which the following holds.

— The simulated day is broken into 100 discrete time periods.

— A simulated global population is used (LandScan 2007).

— There are 27,500 ModelBlocks (which are 20 km × 20 km squares):

a. ModelBlock populations are scaled down to reach the desired total
population;

b. ModelBlocks are assigned to nodes in a round-robin fashion;

c. Each ModelBlock has summary data recorded each communication
period.

— The simulated disease is influenza H1N1.

— The minimum communication time is 24 hours (or 100 time periods).

— The epidemic ends due to herd-immunity (when 36.6% have been infected).

— Agents perform, on average, 32.99 behaviors while active.

Our chief claim is that the GSAM is capable of simulating a global-scale epidemic in a
reasonable amount of time. In Table III, we summarize the performance of a 32-node (one
thread per node) GSAM run with a simulated population of 6.57 billion agents.

This particular run required 224GB of memory and 470.8 minutes (7.845 hours) to simulate
a total of 2.40 billion infections in a population of 6.57 billion agents. Notice, this GSAM
run communicates four times more frequently than required and that the communication
accounts for approximately 27.6% of the total execution time.

Table IV is intended to show how the GSAM’s execution time varies with communication
frequency. This data shows that communication frequency has a small effect on overall
performance. If communication is put off as long as possible (24 hours, or 100 time periods,
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for this particular pathogen), then a typical run takes 15.7 minutes (942 sec). However, if
communication occurs 10 times more frequently, then runs take 20.1 minutes (1203 sec) - a
27.7% performance penalty. Earlier comments about the importance of bucketing still apply.
But “frequent communication” in this context still reduces the total number of RMI
transmissions by several orders of magnitude.

Scaling is an important property of any parallel program. The next two table illustrate how
the GSAM scales across two dimensions. Table V shows how the GSAM scales up as the
overall simulation repeatedly doubles in size. The next table shows how the execution time
of a fixed simulation changes as the available computing power repeatedly doubles.

In general, the GSAM scales up quite well. However, we must be careful when interpreting
the results in Table V and Table VI. Performance is affected by the amount of memory
available. When there is more memory available, garbage collection (GC) occurs less often,
resulting in better performance numbers. With this in mind, interpret the results below with
a grain of salt, because all of these runs allocate 7GB of memory to each node regardless of
whether that much memory is actually required.

From Table IV, we see that doubling the available computing resources will reduce the
required execution time by 25–45%. This is not close to the 50% reduction that perfect
scaling would achieve, but it is acceptable given that 32 well-equipped nodes can simulate
an epidemic in a population of 6.57 billion agents.

6.3. Technical Details
One downside of Java is that maximizing the performance of any particular application
typically requires a careful exploration of many different JVMs and the various options
offered by each. For instance, all of the runs shown here used an option (actually two
options used in tandem) that set the initial heap size equal to the maximum heap size. Had
this option not been used, the measured execution time would have included several
tremendously expensive, on-the-fly heap expansions. These heap expansions degrade
performance, and confuse performance measurements.

One particular way in which JVMs vary is in their implementation of garbage collection.
The JVM used herein uses a “stop-the-world” approach to GC, meaning that when the JVM
starts garbage collection, it temporarily stops all other threads. This approach to GC
seriously inhibits the performance of nodes with many threads. Consequently, even though
the GSAM allows nodes to run many threads, performance is maximized when each node
executes exactly one thread (at least it is when using the Java Hotspot Server VM (1.6.0 07)
that comes bundled with the 1.6.0 07 JDK).

Everything was compiled and run using the 64-bit edition of Java 1.6.0 07. It is important to
note that performance can vary according to the JVM in use. Consequently, even though the
numbers shown are quite good given the scale of the problem, it may be possible to improve
them simply by swapping out the JVM.

All the GSAM performance numbers shown were produced on as many as four HP DL585
servers. Each of these is a quad processor server equipped with 64GB of memory and a full
allotment of Opteron 8216 (2.4GHz) dual-core CPUs. In total, this system has 32 CPU cores
and 256GB of memory. Each of the servers runs Windows Server 2003 Enterprise x64
Edition.
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7. CONCLUSION
To our knowledge, the GSAM is the first bona fide agent-based model that can efficiently
execute global-scale infectious disease simulations, those involving several billion distinct
agents. The GSAM appears also to be the first agent-based model that can execute a
simulation of several hundred million agents in a matter of minutes. Although this
exposition has been couched in terms of infectious diseases, it is clear that the GSAM
platform proper can be applied to a wide range of social, economic, and public health
problems of global scope. These capabilities derive from the particular distributed parallel
approach that was adopted in the design phase. The resulting high ceiling allows researchers
to implement whatever population best suits their research needs.

Not only does the GSAM enable more efficient modeling, but it should also enable more
collaborative modeling. Previously, large ABMs were likely to be effectively tied to a
specific set of hardware. It is too easy to “tune” a massive message-passing interface model
so much as to undermine deployment on different hardware. Since the GSAM is written in
pure Java, it is perfectly portable. Also, since it makes very efficient use of its memory, all
but high population (50 Million or more) models could be deployed on high-end
workstations. Combined, these two features could allow research teams to work faster
because a model-in-progress can be executed in multiple places, not just on one specific
hardware platform.

In sum, the GSAM opens the door to flexible, efficient, portable high-resolution agent-based
modeling on a truly global scale.
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Fig. 1.
Each line in this graph depicts a plausible behavior stream. Each behavior stream determines
the probability that a specific event type is included in an agent’s itinerary at some future
time. Notice, this agent is less likely to make coworker contacts at lunch time.
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Fig. 2.
These two timelines show how the latent and incubation periods are measured.
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Fig. 3.
A basic flowchart of the progress of a GSAM run.
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Fig. 4.
This diagram illustrates many aspects of GSAM implementation.
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Fig. 5.
A graphical representation of an AgentGroup.
NOTE: A realistic AgentGroup class should contain more arrays. This depiction does not
even include gender.

Parker and Epstein Page 26

ACM Trans Model Comput Simul. Author manuscript; available in PMC 2014 January 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Three GSAM set ups intended to use the same number of CPUs.
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Table I

Time and Operations Required to Send 10 Million Doubles between Two JVMs Using RMI Methods with
Different Signatures

Actual RMI
Method

Number of
RMI Calls Required

Number of ser/deser
Pairs Req.

Average
Time (sec)

send(Double d) 10,000,000 10,000,000 858.330

send(double d) 10,000,000 0 637.853

send(Double[] ds) 1 10,000,000 23.433

send(double[] ds) 1 0 1.141
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Table II

Memory Costs per Agent

SimpleAgent Class AgentGroup Class

Object Overhead 16 bytes N/A

A Required Reference 8 bytes N/A

Age 1 byte 1 byte

Disease Status 8 byte 1 byte

Family Members 8 bytes 1 byte

Scheduling Object 8 bytes 2.667 bytes

Total 49 bytes 5.667 bytes
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